физический минимум академика Гинзбург
"Физический минимум" на начало XXI века.
О сайте
Порядок работы
Новости сайта
Контакт
Приёмная комиссия.
Вступительное задание.
Открытые уроки.
Учебники по физике.
Задачи по физике.
Справочник по физике.
Единый государственный экзамен.
Вопросы и консультации.
Советы абитуриенту.
Рефераты.
Олимпиады и турниры.
Современная физика.
Весёлая наука.
Уголок крохобора.
Не только физика.
Директория ссылок.
Репетиторы.
Малая Академия Наук .
Математика для физика.
 
 

Форум.

info@abitura.com

Современная физика.

"Физический минимум" на начало XXI века.

Академик Виталий Лазаревич Гинзбург

Макрофизика

Проблема управляемого ядерного синтеза (номер 1 в «списке») все еще не решена, хотя ей уже более полувека. Я помню, как работа в этом направлении в СССР зародилась в 1950 году. Тогда А. Д. Сахаров и И. Е. Тамм рассказали мне об идее магнитного термоядерного реактора. Кстати сказать, я тогда и долгое время впоследствии думал, что интерес к «термояду» был в СССР обусловлен желанием создать неиссякаемый источник энергии. Однако, как мне уже в недавнее время рассказал И. Н. Головин, термоядерный реактор в те времена интересовал «кого надо» в основном вовсе по другой причине — как источник нейтронов (n) для производства трития (t). Уже в хрущевские времена И. В. Курчатов и его коллеги поняли, что проблему термояда быстро решить нельзя, и в 1956 году она была рассекречена. За границей работы над термоядом также начинались (примерно в тот же период) в основном как секретные, и их рассекречивание в СССР (совершенно нетривиальное для нашей страны по тем временам) сыграло большую положительную роль — обсуждение проблемы стало объектом международных конференций и сотрудничества. Но вот прошло почти 50 лет, а работающий (дающий энергию) термоядерный реактор еще не создан, и, вероятно, до этого момента придется ждать еще лет 15, а может быть, и больше. Особенно продвинута и является фаворитом система токамак. Несколько лет разрабатывался международный проект ITER (International Termonuclear Experimental Reactor). Этот гигантский токамак, стоимостью около 10 миллиардов долларов, предполагалось построить к 2005 году в качестве подлинного прообраза термоядерного реактора будущего. В 2004 году несколько более скромный проект (стоимость около 5 миллиардов долларов), видимо, будет наконец принят. В общем, сомнений в возможности создать реальный термоядерный реактор уже нет, и центр тяжести проблемы, насколько я понимаю, переместился в инженерную и экономическую области.

Что касается альтернативных путей синтеза легких ядер для получения энергии, то надежды на возможности «холодного термояда» оставлены, а мюонный катализ очень изящен, но представляется нереальным источником энергии, по крайней мере, без комбинации с делением урана. Существуют также проекты использования ускорителей с различными ухищрениями. Наконец, возможен инерционный ядерный синтез и, конкретно, «лазерный термояд».

Теперь о высокотемпературной и комнатнотемпературной сверхпроводимости (кратко ВТСП и КТСП, проблема 2). Долгие годы ВТСП было мечтой. Но в 1986–1987 гг. такие материалы созданы. Но механизм сверхпроводимости в различных классах веществ, например в купратах (наивысшая температура Т с =135 К достигнута для HgBa 2 Ca 2 Cu 3 O 8+x без давления; под довольно большим давлением для этого купрата уже Т с = 164 К), остается неясным. В общем, вопрос открыт, несмотря на огромные усилия, затраченные на изучение ВТСП (за 10 лет на эту тему появилось около 50 000 публикаций). Но главный вопрос в этой области, конечно тесно связанный с предыдущим, это возможность создания КТСП. Ничему такая возможность не противоречит, но и быть уверенным в успехе нельзя. Положение здесь вполне аналогично имевшему место до 1986–1987 гг. в отношении ВТСП.

Металлический водород (проблема 3) еще не создан даже под давлением около 3 миллионов атмосфер (речь идет о низкой температуре). Однако исследование молекулярного водорода под большим давлением выявило у этого вещества целый ряд неожиданных и интересных особенностей. Далее, при сжатии ударными волнами и температуре около 3000 К обнаружен, по-видимому , переход в металлическую (т. е. хорошо проводящую) жидкую фазу. При высоком давлении обнаружены также своеобразные особенности у воды (точнее, Н 2 О) и ряда других веществ. Помимо металлического водорода к числу «экзотических» веществ можно отнести фуллерены. Совсем недавно, кроме «обычного» фуллерена С 60 , начал исследоваться фуллерен С 36 , быть может обладающий при добавлении примесей очень высокой температурой сверхпроводящего перехода.

Особое внимание в последние годы привлекает к себе бозе-эйнштейновская конденсация (БЭК) газов. Это, несомненно, очень интересные работы. Длительное время, правда, на БЭК не обращали внимания и иногда даже сомневались в ее реальности. Но эти времена давно прошли, особенно после 1938 года, когда Ф. Лондон связал БЭК со сверхтекучестью 4 He. Стремление наблюдать БЭК в разреженном газе вполне понятно и оправдано. Другое дело, что наблюдение БЭК в газах Rb, Na, Li и, наконец, в H, осуществленное в 1995 году и позже, является очень большим достижением экспериментальной физики. Оно стало возможным только в результате развития методов охлаждения газов до сверхнизких температур и удержания их в ловушках. В бозе-эйнштейновском конденсате атомы находятся в когерентном состоянии, и можно наблюдать интерференционные явления, что привело к появлению понятия об «атомном лазере». Весьма интересна БЭК в двумерном газе.

В отношении нелинейной физики нужно, быть может, лишний раз подчеркнуть, что внимание к ней все усиливается. В значительной мере это связано с тем, что использование современной вычислительной техники позволяет анализировать задачи, об исследовании которых раньше можно было только мечтать.

Недаром XX век иногда называли не только атомным, но и лазерным веком. Совершенствование лазеров и расширение области их применения идет полным ходом. Особенно интересны сверхмощные лазеры. Так, уже достигнута интенсивность (плотность мощности) порядка 10 20 –10 21 Вт/см 2 . При такой интенсивности напряженность электрического поля порядка 10 12 В/см, т. е. оно на два порядка сильнее поля протона на основном уровне атома водорода. Магнитное поле достигает 10 9 –10 10 Э . При этом используются очень короткие импульсы длительностью до 10 –15 с (т. е. до фемтосекунды). Использование таких импульсов открывает целый ряд возможностей, в частности, для получения гармоник, лежащих уже в рентгеновском диапазоне, и, соответственно, рентгеновских импульсов с длительностью в аттосекунды ( 1а = 10 –18 с ). Родственная проблема — создание и использование разеров и гразеров — аналогов лазеров, соответственно, в рентгеновском и гамма-диапазонах.

Проблема 13 — из области ядерной физики. Это, конечно, большая область, поэтому я выделил только два вопроса. Во-первых , это далекие трансурановые элементы в связи с надеждами на то, что отдельные изотопы в силу оболочечных эффектов живут долго (в качестве такого изотопа в литературе указывалось на ядро с Z = 114 и с числом нейтронов N = 184, т. е. с массовым числом А = Z + N = 298). Известные трансурановые элементы с Z < 114 живут лишь секунды или доли секунд. Появлявшиеся в литературе указания на существование в космических лучах долгоживущих (речь идет о миллионах лет) трансурановых ядер пока подтверждены не были. В начале 1999 года появилось сообщение о том, что в Дубне синтезирован 114-й элемент с массовым числом 289, живущий около 30 секунд. Поэтому возникла надежда на то, что элемент ( 114 289 ) действительно окажется долгоживущим. Во-вторых, упомянуты «экзотические» ядра. Это ядра из нуклонов и анти0нуклонов, какие-то гипотетические ядра с повышенной плотностью, не говоря уже о ядрах несферической формы и с некоторыми другими особенностями. Сюда примыкает проблема кварковой материи и кварк-глюонной плазмы.


О сайте
Порядок работы
Новости сайта
Контакт

Современная физика.

Вверх .

Главная страница .

Rambler's Top100Rambler's Top100